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Abstract. We consider the problem of estimating an unknown probgtilis-
tribution from samples using the principle of maximum epyrgmaxent). To
alleviate overfitting with a very large number of featureg propose applying
the maxent principle with relaxed constraints on the exqiemis of the features.
By convex duality, this turns out to be equivalent to findihg Gibbs distribu-
tion minimizing a regularized version of the empirical lags$. We prove non-
asymptotic bounds showing that, with respect to the truestdyitg distribu-
tion, this relaxed version of maxent produces density eggsithat are almost
as good as the best possible. These bounds are in terms céviatiah of the
feature empirical averages relative to their true expextat a number that can
be bounded using standard uniform-convergence technidgmrticular, this
leads to bounds that drop quickly with the number of samgled,that depend
very moderately on the number or complexity of the featWésalso derive and
prove convergence for both sequential-update and patgitddte algorithms. Fi-
nally, we briefly describe experiments on data relevanteéarbdeling of species
geographical distributions.

1 Introduction

The maximum entropy (maxent) approach to probability density estimatas first
proposed by Jaynes [9] in 1957, and has since been used in many areas of computer
science and statistical learning, especially natural language processinglifilnggx-
ent, one is given a set of samples from a target distribution over spate sand a set
of known constraints on the distribution. The distributiothien estimated by a distri-
bution of maximum entropy satisfying the given constraints. Thestraimts are often
represented using a setfehitureqreal-valued functions) on the space, with the expec-
tation of every feature being required to match its empirical average. By xdunadity,
this turns out to be the unique Gibbs distribution maximizimgltkelihood of the sam-
ples, where a Gibbs distribution is one that is exponential ineaticombination of the
features. (Maxent and its dual are described more rigorously in Section 2.)

The work in this paper was motivated by a new application of maxent tartidgm
of modeling the distribution of a plant or animal species, a criticablgnm in conser-
vation biology. This application is explored in detail in a companiapgy [13]. Input



data for species distribution modeling consists of occurrence locatioaparticular
species in a certain region and of environmental variables for that regisimoEmental
variables may include topological layers, such as elevation and aspect, magézabl
layers, such as annual precipitation and average temperature, as well as categerical |
ers, such as vegetation and soil types. Occurrence locations are commoveyl dienin
specimen collections in natural history museums and herbaria. In the tohteaxent,

the sample space is a map divided into a finite number of cells, the matlstedution

is the probability that a random specimen of the species occurs in a givesarajles

are occurrence records, and features are environmental variables or funcieas.th

It should not be surprising that maxent can severely overfit trainirg\dhen the
constraints on the output distribution are based on feature expestatie described
above, especially if there is a very large number of features. For instancer ape
plication, we sometimes consider threshold features for each environmaritdile.
These are binary features equal to one if an environmental variable is laagex fixed
threshold and zero otherwise. Thus, there is a continuum of features fovadahle,
and together they force the output distribution to be non-zeroatnglues achieved by
the samples. The problem is that in general, the empirical averages of theefeatll
almost never be equal to their true expectation, so that the targebdigiri itself does
not satisfy the constraints imposed on the output distribu@nthe other hand, we do
expect that empirical averages will blwseto their expectations. In addition, we often
have bounds or estimates on deviations of empirical feature averageth&raxpec-
tations (empirical error bounds). In this paper, we propose a relaxati@ature-based
maxent constraints in which we seek the distribution of maximum eypsobject to the
constraint that feature expectationsvaighin empirical error boundsf their empirical
averages (rather than exactly equal to them).

As was the case for the standard feature-based maxent, the convex duakef this
laxed problem has a natural interpretation. In particular, this problens tout to be
equivalent to minimizing the empirical log loss of the sample poitis @an/;-style
regularization term. As we demonstrate, this form of regularizatiomhaserous ad-
vantages, enabling the proof of meaningful bounds on the deviatismebatthe density
estimate and the true underlying distribution, as well as the desivati simple algo-
rithms for provably minimizing this regularized loss. Beginningh the former, we
prove that the regularized (empirical) loss function itself gives areuppund on the
log loss with respect to the target distribution. This providestaratensible motivation
for minimizing this function. More specifically, we prove a guarantadle log loss
over the target distribution in terms of empirical error bounds on featur hus, to get
exact bounds, it suffices to bound the empirical errors. For finite $&atires, we can
use Chernoff bounds with a simple union bound; for infinite,sstscan choose from
an array of uniform-convergence techniques. For instance, for a set of ba@dures
with VC-dimensiond, if given m samples, the log loss of the relaxed maxent solution
on the target distribution will be worse by no more thag|A*|;/d1In(m?/d)/m)
compared to the log loss @y Gibbs distribution defined by weight vectar with
£1-norm||A%|;. For a finite set of bounded, but not necessarily binary features, this di
ference is at mosD (|| A*|1+/(Inn)/m) wheren is the number of features. Thus, for
a moderate number of samples, our method generates a density estimatalthasts



as good as the best possible, and the difference can be bounded non-#sgathpto
Moreover, these bounds are very moderate in terms of the number or campfehe
features, even admitting an extremely large number of features from a classrufed
VC-dimension.

Previous work on maxent regularization justified modified loss fonetias ei-
ther constraint relaxations [2, 10], or priors over Gibbs distidng [2, 8]. Our reg-
ularized loss also admits these two interpretations. As a relaxed maxbag heen
studied by Kazama and Tsuijii [10] and as a Laplace prior by Goodman [8]eTives
works give experimental evidence showing benefité, edtyle regularization (Laplace
prior) over¢3-style regularization (Gaussian prior), but they do not provide the-
oretical guarantees. In the context of neural nets, Laplace priors have hdarddty
Williams [20]. A smoothened version éf-style regularization has been used by Dekel,
Shalev-Shwartz and Singer [5].

Standard maxent algorithms such as iterative scaling [4, 6], gradient deldeent
ton and quasi-Newton methods [11, 16] and their regularized vers298s]0, 20] per-
form a sequence of feature weight updates until convergence. In each stegpdiagy u
all feature weights. This is impractical when the number of features is aegg In-
stead, we propose a sequential update algorithm that updates only ame feaight in
each iteration, along the lines of algorithms studied by Collins, Schapd Singer [3].
This leads to a boosting-like approach permitting the selection df¢befeature from a
very large class. For instance, the best threshold feature associated wgleaariable
can be found in a single linear pass through the (pre-sorted) data lexaghtconcep-
tually we are selecting from an infinite class of features. In Section 4, werideur
sequential-update algorithm and give a proof of convergence. Othelifgpdike ap-
proaches to density estimation have been proposed by Welling, Zemel atoeh IHi6]
and Rosset and Segal [15].

For cases when the number of features is relatively small, yet we want to preven
overfitting on small sample sets, it might be more efficient to minirttizeregularized
log loss by parallel updates. In Section 5, we give the parallel-updaséowenf our
algorithm with a proof of convergence.

In the last section, we return to our application to species distributiodeling.
We present learning curves for relaxed maxent for four species of birds withyang
number of occurrence records. We also explore the effects of regularipatithe log
loss over the test data. A more comprehensive set of experiments is edailndhe
companion paper [13].

2 Maximum Entropy with Relaxed Constraints

Our goal is to estimate an unknown probability distributiorover asample space
X which, for the purposes of this paper, we assume to be finite. We aen giget of
samplesy, ... , x,, drawn independently at random accordingtd he corresponding
empirical distribution is denoted b

Fa)=L|{1<i<m:a =z}

We also are given a set &aturesfi, ... , f, wheref; : X — R. The vector of all
features is denoted bfy. For a distributionr and functionf, we writer[f] to denote the



expected value of under distributionr (and sometimes use this notation even when
is not necessarily a probability distribution):

mlf] =2 sexm(@)f(2).

In general;® may be quite distant, under any reasonable measure, frddm the
other hand, for a given functiofi, we do expect[f], the empirical average of, to
be rather close to its true expectatiofy]. It is quite natural, therefore, to seek an ap-
proximationp under whichf;'s expectation is equal t6[f;] for every f;. There will
typically be many distributions satisfying these constraints.mbagimum entropy prin-
ciplesuggests that, from among all distributions satisfying these @nts, we choose
the one of maximum entropy, i.e., the one that is closest to unifdere, as usual, the
entropy of a distributiom on X is defined to bél(p) = - . yp(x) Inp(x).

Alternatively, we can consider aBibbs distribution®f the form

X F (@)

Zx
whereZy = >, . e*f@ is a normalizing constant, andl € R™. Then it can be
proved [6] that the maxent distribution described above is the sames anakimum

likelihood Gibbs distribution, i.e., the distributian, that maximizes]_[;i1 ax(z;), or
equivalently, minimizes the empirical log loss (negative normalizedikaejhood)

(ZA(CC =

Le(d) = =) ga(e) = ~lngs] 1)
=1

A related measure is the relative entropy (or Kullback-Leibler divergeneépet! as
RE(7 || gx) = 7[In(7/qx)].

The log loss and the relative entropy differ only by the conskt). We will use the
two interchangeably as objective functions.
Thus, the convex programs corresponding to the two optimizatioipigms are

P r;leaZ(H(p) subject to Q: ){IeliRIln Lz(X)
plfi) = 73]

whereA is the simplex of probability distributions ovef.

This basic approach computes the maximum entropy distribptiorwhichp|f;] =
7[f;]. However, we do not expeé{ f,] to beequalto «[f;] but only close to it. There-
fore, in keeping with the motivation above, we can soften these consttaihtive the
form

plf5] = 7511 < 55 (@)

whereg; is an estimated upper bound of how clag¢;], being an empirical average,
must be to its true expectatiatif;]. Thus, the problem can be stated as follows:

H(p) subject to
max (p) subj

Vi |plf] — 7L < B



This corresponds to the convex program:

P’':  max_H(p) subjectto
pERT)X
2pexp(z) =1 (Ao)
Vi wfi] = plfi] < B; A
Vi plfi] = 7fi] < B; (A})

To compute the convex dual, we form the Lagrangian (dual variables acaied next
to constraints) to obtain the dual program

min max {H(p) = o ([Zpexp()] —1)

Ao€ER pe(RH)X
A7 A ert

+Z (lf3] = 73] +Zﬁ, (OF +A7)].

Note that we have retained use of the notafipfi andH(p), W|th the natural defini-
tions, even though is no longer necessarily a probability distribution. Without loss
of generality we may assume that in the solution, at most one in each;bmrj_ is
nonzero. Otherwise, we could decrease them both by a positive value, degtbasin
value of the third sum while not affecting the remainder of the expes3$hus, if we
set); = )\j — A, then we obtain a simpler program

\Jhin g dnax [H(P)*)\o ([Zrexp(@)] - 1) +Z/\ ff[fj])Jij: b’jW\]
The inner expression is differentiable and concavp(m). Setting partial derivatives
with respect tgp(x) equal to zero yields that must be a Gibbs distribution with pa-
rameters corresponding to dual variablesandln Z5 = A¢ + 1. Hence the program
becomes

min |H(gx) + A - (ga[f] —ﬂf])+Zﬁj|/\jﬂ- (3)

AcR™

Note that

H(gx) = —aallnga] = —ga[A - f —InZx] = =X - qa[f] + In Zx.
Hence, the inner expression of Eq. (3) becomes

fx-ﬁ[f]+1nzx+26jm|:Lﬁ(AHzﬂjM. 4)

(See Eq. (5) below.) Denoting this function DQ(A), we obtain the final version of the
dual program
Q' : m}%n LZ()\).

Thus, we have shown that maxent with relaxed constraints is equivaleribimizing
L2(X). This modified objective function consists of an empirical loss tBet\) plus

an additional termy _; 3;|);| that can be interpreted as a form of regularization limiting
how large the weights; can become.



3 Bounding the Loss on the Target Distribution

In this section, we derive bounds on the performance of relaxed maxemiadtathe
true distributions. That is, we are able to bourid. (}) in terms ofL.(A*) whenA
minimizes the regularized loss agg- is an arbitrary Gibbs distribution, in particu-
lar, the Gibbs distribution minimizing the true loss. Note tR&i(x || g») differs from
L (X) only by the constant terif (), so analogous bounds also hold RiE(7 || g5 ).
We begin with the following simple lemma on which all of the boaindthis section
are based. The lemma states that the difference between the true and emgsicél lo
any Gibbs distribution can be bounded in terms of the magnitudesofétights\ ; and
the deviation of feature averages from their means.

Lemma l. Letgy be a Gibbs distribution. Then

n

L (A) = La (V)] < D[N ]|FL] = 7l5]]

j=1
Proof. Note that
Lﬁ()\) = —ﬁ'[lnq,\] = —7~T[>\ -f - anA] =—A\- ﬁ'[f] +1In Z,. (5)
Using an analogous identity far, (X), we obtain

LX) = Le ()] = [-X-7[f] + In Zx + X - 7[f] — In Zy\|

= X (7@f] = 7lf)] < Z N[ |7 L] = = (3] 0

This lemma yields an alternative motivation for minimizing. For if we have
bounds|#[f;] — «[f;]| < B;, then the lemma implies that, () < LZ(X). Thus, in
minimizing L2 (), we also minimize an upper bound Br()), the true log loss OA.

Next, we prove that the distribution produced using maxent cannotumd worse
than the best Gibbs distribution (with bounded weight vector),raggythe empirical
errors of the features are not too large.

Theorem 1. Assume that for each |r[f;] — 7[f;]| < ;. Let A minimize the regular-
ized log Iosst:(A). Then for an arbitrary Gibbs distributiof«

L.(A) < L. (A*) + Qiﬁa“ﬂ-

j=1
Proof.
L.(A) <Lz(A) + 32, 8[| = LZ(X) (6)
< LE() = La(X*) + 3, 651X )
< L(A*) + 2%, 3|43 8)

Egs. (6) and (8) follow from Lemma 1, Eq. (7) follows from the iolity of A. O



Thus, if we can bounti[f;] — 7[f;]|, then we can use Theorem 1 to obtain a bound
on the true Ios:LW(S\). Fortunately, this is just a matter of bounding the difference
between an empirical average and its expectation, a problem for which thete &xi
huge array of techniques. For instance, when the features are bounded, weean pr

the following:

Corollary 1. Assume that feature§, ..., f,, are bounded iff0, 1]. Leté > 0 and let
A minimizeLQ(A) with 8; = 8 = /In(2n/6)/(2m) for all j. Then with probability
at leastl — 6, for every Gibbs distributiog«,

< In(2n/6)
< * * —,
La(X) < La(X%) + 2| N/ =,
Proof. By Hoeffding's inequality, for a fixed, the probability thatr[f;] — 7[f;]| ex-
ceedsiis at most—27"m — 6/n. By the union bound, the probability of this happening
for anyj is at most. The corollary now follows immediately from Theorem 1. O

Similarly, when thef;’s are selected from a possibly larger class of binary features
with VC-dimensiond, we can prove the following corollary. This will be the case,
for instance, when using threshold featurescorariables, a class with VC-dimension
O(Ink).

Corollary 2. Assume that features are binary with VC-dimensiometé > 0 and
let X minimizeL? (A) with 3, = 3 = V[dIn(em?/d) + In(1/6) + In(4e8)]/(2m) for
all j. Then with probability at least — ¢, for every Gibbs distributiogx~,

La(A) < L(A) + 2H>‘*H1\/dln(em2/d) +1In(1/6) + In(4e8)

2m

Proof. In this case, a uniform-convergenceresult of Devroye [7], combinddSdtier’s
Lemma, can be used to argue thaltf;] — 7[f;]| < § for all f; simultaneously, with
probability at leasi — 6. a

As noted in the introduction, these corollaries show that the diftexam perfor-
mance between the density estimate computed by minimizﬁ@nd the best Gibbs
distribution (of bounded norm), becomes small rapidly as the numbsaraplesm
increases. Moreover, the dependence of this difference on the number oegdyngf
the features is quite moderate.

4 A Sequential-update Algorithm and Conver gence Proof

There are a number of algorithms for finding the maxent distribuéspecially iterative
scaling and its variants [4, 6]. In this section, we describe and pravedhvergence
of a sequential-update algorithm that modifies one weighat a time, as explored
by Collins, Schapire and Singer [3] in a similar setting. This stflecordinate-wise
descent is convenient when working with a very large (or infinite) numbiatures.



Input: Finite domainX
featuresfi, ..., fn wheref; : X — [0, 1]
examplesty, ... ,zm € X
nonnegative regularization parametgss. .. , G,
Output: A1, Az, ... minimizing LZ(A)
LetA1 =0
Fort=1,2,...:
— let(j,6) = arg 1(151161)1 Fj(A¢, 6)

whereFj; (A, §) is the expression appearing in Eq. (12)

o, Ao =
LT N else

Fig. 1. A sequential-update algorithm for optimizing the regued log loss.

As explained in Section 2, the goal of the algorithm is to fxaninimizing the
objective functiorLQ(A) givenin Eq. (4). Our algorithm works by iteratively adjusting
the single weight\; that will maximize (an approximation of) the changeﬁﬁ. To
be more precise, suppose we attb );. Let X\’ be the resulting vector of weights,
identical toX exceptthal\; = \; + 6. Then the change ih? is

L?(X)—L?(A) A-F[f] = N &[] 2y —InZx + B (N = D) )
S7[f5] +In(gn [e*7]) + B; (1A, + 8] — M) (10)

87(f] + m(ga[1+ (¢ = 1) f]) + B;(1A; + 6] — [A;]) (11)

féw[m +In(1+ (€ = Daalf;)) + B (1A + 6] — D). (12)

Eq. (9) follows from Eq. (5). Eq. (10) uses
Z A f@)+8fi(@) — 7, Z o (x)etfi@ (13)

zeX rzeX

Eq. (11) is becaus€® < 1 + (¢4 — 1)z forz € [0, 1].

Let F;(A, §) denote the expression in Eq. (12). This function can be minimized over
all choices ob € R via a simple case analysis on the sigmeft- §. In particular, using
calculus, we see that we only need consider the possibilitysthat—\; or thaté is
equal to

(7[f;] = B5) (1 — axlfs]) (7l fi] + B5) (1 — axlf5])
n ( (1= #f5) + B;)aalf)] ) or In ( (=715 - Balfy] )

where the first and second of these can be valid only; i § > 0 and\; + 6 < 0,
respectively.
This case analysis is repeated for all featyted he pair(j, §) minimizing F; (X, 6)
is then selected antlis added to\;. The complete algorithm is shown in Figure 1.
The following theorem shows that this algorithm is guaranteed toym®a se-
quence of\;'s minimizing the objective functioﬂLg in the case of interest where all




the 8;’s are positive. A modified proof can be used in the unregularized caseiatwh
all the 3;'s are zero.

Theorem 2. Assume all thes;’s are strictly positive. Then the algorithm of Figure 1
produces a sequeneg, Ao, ... for which

lim L2(\) = min L2(N).

Proof. Let us define the vectors™ and A~ in terms of A as follows: for eacly, if
Aj > 0then\S = \; and)\; = 0,andif)\; < 0then\; = 0and\; = —);. Vectors
AT, A7, A, A7, etc. are defined analogously.

We begin by rewriting the functiof;. For anyA, 6, we have that

A+ 6| — |A| =min{6*T +67 | 6T > AT, 67 > A, 6T —5 =6} (14)

This can be seen by a simple case analysis on the sighswél A + 6. Plugging into
the definition ofF; gives

Fj(X,8) = min{G; (X, 61,67) |67 > —AT,67 > —\",6T7 — ¢ =6}
where
G5(A,87,67) = (67 = s1)Ff] +In (14 (770 = Daalfi]) + (67 +87).
Combined with Eqg. (12) and our choice pandé, this gives that
L2 (A1) = L2(A) < minmin F (A, 0)

= minmin{G;(A,67,67) [ 67 > =X\[;,67 > =\ ;}(15)
j ; .
Let minG () denote this last expression.
SinceG;(A,0,0) = 0, it follows thatminG(A,) is not positive and hende?()\t)
is nonincreasing in. Since log loss is nonnegative, this means that

> Bl <TE(M) < oo
J

Therefore, using our assumption that thés are strictly positive, we see that the's
must belong to a compact space.

Since),’s come from a compact space, in Eq. (15) it suffices to consider upgfates
and¢~ that come from a compact space themselves. Funcfigrege uniformly con-
tinuous over these compact spaces, hence the fungiing is continuous.

The fact that\;'s come from a compact space also implies that they must have a
subsequence converging to some veéto@learly,LQ is nonnegative, and we already
noted thamg()\t) is nonincreasing. Thereforbm; Lg(At) exists and is equal, by
continuity, toLf:(X). Moreover, the differencds?()\Hl)fLZ()\t) must be converging



to zero, saninG(\), which is nonpositive, also must be converging to zero by Eq. (15).
By continuity, this means thahinG(\) = 0. In particular, for eachi, we have

min{G;(X,67,67) |67 > —AT,67 > -7} =0. (16)

We will complete the proof by showing that this equation implies thatand A~
together withg; satisfy the KKT (Kuhn-Tucker) conditions [14] for the convex pro-
gramP’, and thus form a solution to this optimization problem as well astdialQ’,
the minimization ofo:. Forp = g5, these conditions work out to be the following for
all 5:

A >0, #f] - aslf] < By, ATF(] - aslf] - B;) =0 17)
; =0, asfil = 7f3] < B;, g_(qx[f7] w[fi] = B;) = 0. (18)

Recall thatG;(X,0,0) = 0. Thus, by Eq. (16), if\] > 0 thenG;(X,6*,0) is
nonnegative in a neighborhood & = 0, and so has a local minimum at this point.
That is,

G (X, 61,0
= WO Al

If AT =0, then Eq. (16) gives that;(X,0,0) > 0 for 6+ > 0. Thus,G;(X, §*,0)
cannot be decreasing&@t = 0. Therefore, the partial derivative evaluated above must
be nonnegative. Together, these arguments exactly prove Eq. (1{L&ds proved
analgously.

Thus, we have proved that

lim L2) =12(%) = min L2(N). O

5 A Paralle-update Algorithm

Much of this paper has tried to be relevant to the case in which we are faced vetly
large number of features. However, when the number of features is relasivill,
it may be reasonable to minimize the regularized Ibgsk) using an algorithm that
updates all features simultaneously on every iteration. There are qeiteadorithms
that do this for the unregularized case, such as iterative scaling [4a6liegit descent,
Newton and quasi-Newton methods [11, 16].

Williams [20] outlines how to modify any gradient based search to inclyestyle
regularization. Kazama and Tsujii [10] use a gradient based method thasémnad-
ditional linear constraints to avoid discontinuities in the firstigdive. Regularized
variants of iterative scaling were proposed by Goodman [8], but withceomplete
proof of convergence. In this section, we describe a variant of iterativengaaith a
proof of convergence. Note that the gradient based or Newton methodsheifgster
in practice.

Throughout this section, we make the assumption (without logeoérality) that,
forallz € X, fj(x) > 0 and}_; f;(x) < 1. Like the algorithm of Section 4, our



parallel-update algorithm is based on an approximation of the change objhctive
functionL?, in this case the following, whe®¥ = X + 6:

LEN) = LE2A) = X #[f] = N - #[f] + I Za —InZx + > 31N = [M1)
J

= =6 Ff]+maalexp(6- )]+ D 0;(1% + 651 = 1N (19

J

< [FoAlhl+ aalfle® — D+ BN+~ D] @0)

Eq. (19) uses Eq. (13). For Eq. (20), note first thatyit R andp; > 0with 3~ p; <1
then

exp (ZJ pj:cj) -1< ij(ewj —1).
J
(See Collins, Schapire and Singer [3] for a proof.) Thus,

g [exp (32, 8;4)] < a1+ 3, fi(e™ = 1)]
=In (1+ X, aalfil(e” - 1)
<D el 1)
sinceln(1l +z) < zforallz > —1.

Our algorithm, on each iteration, minimizes Eq. (20) over all choices o ise
With a case analysis on the signbf + 6;, and some calculus, we see that the mini-

mizing é; must occur whei; = f>\j', or whend; is either
In (ﬂfj] - ﬁj) or In (ﬂfj] +ﬁj>
a[f;] aalf;]

where the first and second of these can be valid only i §; > 0 and\; + 6; < 0,
respectively. The full algorithm is shown in Figure 2. As before, we peove the
convergence of this algorithm when thgs are strictly positive.

Theorem 3. Assume all thes;’s are strictly positive. Then the algorithm of Figure 2
produces a sequeneg, Ao, ... for which

lim L2 (X)) = min L2(\).

t—o0

Proof. The proof mostly follows the same lines as for Theorem 2. Here we sketch
main differences.
Let us redefind’; andG; as follows:

Fj(X,6) = =67[f;] + aalfil(€® — 1) + B;(1A; + 8] — |\j))



Input: Finite domainX

featuresfi, ..., fn wheref; : X — [0, 1]
andy_; fj(z) < 1forallz € X
examplesty, ... ,om € X

nonnegative regularization parametgss. .. , G,

Output: A1, Az, ... minimizing LZ(\)

LetA\1 =0

Fort=1,2,...:
— foreachj, leté; = argmin (*57~T[fj] +aalfil(e® = 1) + B (1A + 6] — |>\j|))
— UpdateAt+1 =X+

Fig. 2. A parallel-update algorithm for optimizing the reguladzeg loss.

and
Gi(A8%,67) = (67 = 6T)Ff] + aalfil(e” 7 = 1)+ B8 +67).
Then by Eq. (14),
Fj(A,8) = min{G;(X,6%,67) | §* > —AF, 67 > A7, 6 =067 —6 ).
So, by Eq. (20),
L2(Ae1) —LE(A) < min}~; Fj (e, 65)

=), mins; Fj(A¢, 65)
=, min{Gj(A, 6,67 | 67 > =AT, 67 > =27}
Note thatG; (A, 0,0) = 0, so none of the terms in this sum can be positive. As in
the proof of Theorem 2, th&,’s have a convergent subsequence converging to some

for which
>, min{G;(X,6F,67) [ 65 > =T, 67

L

> -\ }=0.

This fact, in turn, implies thah*, A~ andgy satisfy the KKT conditions for convex
programP’. This follows using the same arguments on the derivative§ phs in
Theorem 2. O

6 Experiments

In order to evaluate the effect of regularization on real data, we used maxaotiel
the distribution of some bird species, based on occurrence recordshiottiteAmeri-
can Breeding Bird Survey [17]. Experiments described in this sectiodapveiith the
(much more extensive) experiments given in the companion paper [13].

We selected four species with a varying number of occurrence records: Hutton
Vireo (198 occurrences), Blue-headed Vireo (973 occurrences), Yellow-thrdimésd
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Fig. 3. Learning curvesLog loss averaged over 10 partitions as a function of the runob
training examples. Numbers of training examples are plaitea logarithmic scale.

(1611 occurrences) and Loggerhead Shrike (1850 occurrences). The occurrarafe dat
each species was divided into ten random partitions: in each partition, St afcur-
rence localities were randomly selected for the training set, while the namyab0%
were set aside for testing. The environmental variables (coverages) usthaANweri-

can grid with 0.2 degree square cells. We used seven coverages: elevatoh,slepe,
annual precipitation, number of wet days, average daily temperature and &unper
range. The first three derive from a digital elevation model for Norefica [18], and
the remaing four were interpolated from weather station readings [12]. &aehiage

is defined over a 386 286 grid, of which 58,065 points have data for all coverages.

In our experiments, we used threshold features derived from all envanotaivari-
ables. We reduced thg to a single regularization paramefeis follows. We expect
|7[f;] = 7[f5]l = olf;]/v/m, whereg[f;] is the standard deviation ¢f underr. We
therefore approximated f;] by the sample deviatiofi| f;] and used; = 8 [f;]//m.
We believe that this method is more practical than the uniform converdemasds
from section 3, because it allows differentiation between features dependerguri-
cal error estimates computed from the sample data. In order to analyze thedmeth
could, for instance, bound errors in standard deviation estimates wsifogm conver-
gence results.

We ran two types of experiments. First, we ran maxent on increasing sulisbe
training data and evaluated log loss on the test data. We took an averageroper-
titions and plotted the log loss as a function of the number of tngiexamples. These
plots are referred to as learning curves. Second, we also varied the regidarjzat
rameters and plotted the log loss for fixed numbers of training examples as tursctif
3. These curves are referred to as sensitivity curves. In addition to thesscwe give
examples of Gibbs distributions returned by maxent with and withegularization.

Fig. 3 shows learning curves for the four studied species. In all o8 werset
8 = 1.0. This choice is justified by the sensitivity curve experiments desdriielow.
In the absence of regularization, maxent would exactly fit the training déh delta
functions around sample values of the environmental variables. Thiklwesult in
severe overfitting even when the number of examples is large. As therlganmives
show, the regularized maxent does not exhibit this behavior, andiittes and better
distributions as the number of training examples increases.

In order to see how regularization facilitates learning, we examine th#irgsdis-
tributions. In Fig. 4, we show Gibbs distributions returneadbrggularized and an insuf-
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Fig. 4. Feature profiles learned on the first partition of the Yelldweated VireoFor every envi-
ronmental variable, its additive contribution to the expaiof the Gibbs distribution is given as
a function of its value. Profiles for the two values@have been shifted for clarity — this cor-
responds to adding a constant in the exponent; it has, howsveffect on the resulting model
since constants in the exponent cancel out with the noratadiz factor.

Hutton’s Vireo Blue-h. Vireo Yellow-th. V.

1 5

10 and 100 training examples
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Fig. 5. Sensitivity curvesLog loss averaged over 10 partitions as a functio ébr a varying
number of training examples. For a fixed valuedpimaxent finds better solutions (with smaller
log loss) as the number of examples grows. We ran maxent Witt32, 100 and 316 training
examples. Curves from top down correspond to these numbenges for higher numbers are
missing where fewer training examples were available. &ahf3 are plotted on a log scale.

regularization value (B)

ficently regularized run of maxent on the first partition of the Yelldwetited Vireo. To
represent Gibbs distributions, we use feature profiles. For each emartal variable,
we plot the contribution to the exponent by all the derived thretsfedtures as a func-
tion of the value of the environmental variable. This contributigu$s the sum of step
functions corresponding to threshold features weighted by the comdsgplambdas.
As we can see, the value 6f= 0.01 only prevents components affrom becoming
arbitrarily large, but it does little to prevent heavy overfittingtwitany peaks capturing
single training examples. Raisimtto 1.0 completely eliminates these peaks.

Fig. 5 shows the sensitivity of maxent to the regularization valuBote that the
minimum log loss is achieved consistently arouhe: 1.0 for all studied species. This
suggests that for the purposes of maxent regularizafiff)] are good estimates of
|7[f;] — 7[f;]| and that the maxent criterion models the underlying distribution, well
at least for threshold features. Log loss minima for other feature ty@gsha less
consistent accross different species [13].
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