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Abstract. We consider the problem of estimating an unknown probability dis-
tribution from samples using the principle of maximum entropy (maxent). To
alleviate overfitting with a very large number of features, we propose applying
the maxent principle with relaxed constraints on the expectations of the features.
By convex duality, this turns out to be equivalent to finding the Gibbs distribu-
tion minimizing a regularized version of the empirical log loss. We prove non-
asymptotic bounds showing that, with respect to the true underlying distribu-
tion, this relaxed version of maxent produces density estimates that are almost
as good as the best possible. These bounds are in terms of the deviation of the
feature empirical averages relative to their true expectations, a number that can
be bounded using standard uniform-convergence techniques. In particular, this
leads to bounds that drop quickly with the number of samples,and that depend
very moderately on the number or complexity of the features.We also derive and
prove convergence for both sequential-update and parallel-update algorithms. Fi-
nally, we briefly describe experiments on data relevant to the modeling of species
geographical distributions.

1 Introduction

The maximum entropy (maxent) approach to probability density estimation was first
proposed by Jaynes [9] in 1957, and has since been used in many areas of computer
science and statistical learning, especially natural language processing [1, 6]. In max-
ent, one is given a set of samples from a target distribution over some space, and a set
of known constraints on the distribution. The distribution isthen estimated by a distri-
bution of maximum entropy satisfying the given constraints. The constraints are often
represented using a set offeatures(real-valued functions) on the space, with the expec-
tation of every feature being required to match its empirical average. By convex duality,
this turns out to be the unique Gibbs distribution maximizing the likelihood of the sam-
ples, where a Gibbs distribution is one that is exponential in a linear combination of the
features. (Maxent and its dual are described more rigorously in Section 2.)

The work in this paper was motivated by a new application of maxent to the problem
of modeling the distribution of a plant or animal species, a critical problem in conser-
vation biology. This application is explored in detail in a companion paper [13]. Input



data for species distribution modeling consists of occurrence locationsof a particular
species in a certain region and of environmental variables for that region. Environmental
variables may include topological layers, such as elevation and aspect, meteorological
layers, such as annual precipitation and average temperature, as well as categorical lay-
ers, such as vegetation and soil types. Occurrence locations are commonly derived from
specimen collections in natural history museums and herbaria. In the context of maxent,
the sample space is a map divided into a finite number of cells, the modeleddistribution
is the probability that a random specimen of the species occurs in a given cell, samples
are occurrence records, and features are environmental variables or functions thereof.

It should not be surprising that maxent can severely overfit training data when the
constraints on the output distribution are based on feature expectations, as described
above, especially if there is a very large number of features. For instance, in our ap-
plication, we sometimes consider threshold features for each environmental variable.
These are binary features equal to one if an environmental variable is larger than a fixed
threshold and zero otherwise. Thus, there is a continuum of features for eachvariable,
and together they force the output distribution to be non-zero onlyat values achieved by
the samples. The problem is that in general, the empirical averages of the features will
almost never be equal to their true expectation, so that the target distribution itself does
not satisfy the constraints imposed on the output distribution.On the other hand, we do
expect that empirical averages will becloseto their expectations. In addition, we often
have bounds or estimates on deviations of empirical feature averages fromtheir expec-
tations (empirical error bounds). In this paper, we propose a relaxation of feature-based
maxent constraints in which we seek the distribution of maximum entropy subject to the
constraint that feature expectations bewithin empirical error boundsof their empirical
averages (rather than exactly equal to them).

As was the case for the standard feature-based maxent, the convex dual of thisre-
laxed problem has a natural interpretation. In particular, this problem turns out to be
equivalent to minimizing the empirical log loss of the sample points plus anℓ1-style
regularization term. As we demonstrate, this form of regularization hasnumerous ad-
vantages, enabling the proof of meaningful bounds on the deviation between the density
estimate and the true underlying distribution, as well as the derivation of simple algo-
rithms for provably minimizing this regularized loss. Beginningwith the former, we
prove that the regularized (empirical) loss function itself gives an upper bound on the
log loss with respect to the target distribution. This provides another sensible motivation
for minimizing this function. More specifically, we prove a guarantee on the log loss
over the target distribution in terms of empirical error bounds on features. Thus, to get
exact bounds, it suffices to bound the empirical errors. For finite sets of features, we can
use Chernoff bounds with a simple union bound; for infinite sets, we can choose from
an array of uniform-convergence techniques. For instance, for a set of binary features
with VC-dimensiond, if given m samples, the log loss of the relaxed maxent solution
on the target distribution will be worse by no more thanO(‖λ�‖1

√

d ln(m2/d)/m)
compared to the log loss ofany Gibbs distribution defined by weight vectorλ� with
ℓ1-norm‖λ�‖1. For a finite set of bounded, but not necessarily binary features, this dif-
ference is at mostO(‖λ�‖1

√

(lnn)/m) wheren is the number of features. Thus, for
a moderate number of samples, our method generates a density estimate that isalmost



as good as the best possible, and the difference can be bounded non-asymptotically.
Moreover, these bounds are very moderate in terms of the number or complexity of the
features, even admitting an extremely large number of features from a class ofbounded
VC-dimension.

Previous work on maxent regularization justified modified loss functions as ei-
ther constraint relaxations [2, 10], or priors over Gibbs distributions [2, 8]. Our reg-
ularized loss also admits these two interpretations. As a relaxed maxent, ithas been
studied by Kazama and Tsujii [10] and as a Laplace prior by Goodman [8]. These two
works give experimental evidence showing benefits ofℓ1-style regularization (Laplace
prior) overℓ2

2-style regularization (Gaussian prior), but they do not provide any the-
oretical guarantees. In the context of neural nets, Laplace priors have been studied by
Williams [20]. A smoothened version ofℓ1-style regularization has been used by Dekel,
Shalev-Shwartz and Singer [5].

Standard maxent algorithms such as iterative scaling [4, 6], gradient descent, New-
ton and quasi-Newton methods [11, 16] and their regularized versions [2, 8, 10, 20] per-
form a sequence of feature weight updates until convergence. In each step, they update
all feature weights. This is impractical when the number of features is very large. In-
stead, we propose a sequential update algorithm that updates only one feature weight in
each iteration, along the lines of algorithms studied by Collins, Schapire and Singer [3].
This leads to a boosting-like approach permitting the selection of thebest feature from a
very large class. For instance, the best threshold feature associated with a single variable
can be found in a single linear pass through the (pre-sorted) data, even though concep-
tually we are selecting from an infinite class of features. In Section 4, we describe our
sequential-update algorithm and give a proof of convergence. Other boosting-like ap-
proaches to density estimation have been proposed by Welling, Zemel and Hinton [19]
and Rosset and Segal [15].

For cases when the number of features is relatively small, yet we want to prevent
overfitting on small sample sets, it might be more efficient to minimizethe regularized
log loss by parallel updates. In Section 5, we give the parallel-update version of our
algorithm with a proof of convergence.

In the last section, we return to our application to species distribution modeling.
We present learning curves for relaxed maxent for four species of birds with avarying
number of occurrence records. We also explore the effects of regularizationon the log
loss over the test data. A more comprehensive set of experiments is evaluated in the
companion paper [13].

2 Maximum Entropy with Relaxed Constraints

Our goal is to estimate an unknown probability distributionπ over asample space
X which, for the purposes of this paper, we assume to be finite. We are given a set of
samplesx1, . . . , xm drawn independently at random according toπ. The corresponding
empirical distribution is denoted bỹπ:

π̃(x) = 1
m

∣

∣{1 ≤ i ≤ m : xi = x}
∣

∣.

We also are given a set offeaturesf1, . . . , fn wherefj : X → R. The vector of alln
features is denoted byf . For a distributionπ and functionf , we writeπ[f ] to denote the



expected value off under distributionπ (and sometimes use this notation even whenπ
is not necessarily a probability distribution):

π[f ] =
∑

x∈Xπ(x)f(x).

In general,̃π may be quite distant, under any reasonable measure, fromπ. On the
other hand, for a given functionf , we do expect̃π[f ], the empirical average off , to
be rather close to its true expectationπ[f ]. It is quite natural, therefore, to seek an ap-
proximationp under whichfj ’s expectation is equal tõπ[fj ] for everyfj . There will
typically be many distributions satisfying these constraints. Themaximum entropy prin-
ciplesuggests that, from among all distributions satisfying these constraints, we choose
the one of maximum entropy, i.e., the one that is closest to uniform.Here, as usual, the
entropy of a distributionp onX is defined to beH(p) = −∑

x∈Xp(x) ln p(x).
Alternatively, we can consider allGibbs distributionsof the form

q
�

(x) =
e�·f(x)

Z
�

whereZ
�

=
∑

x∈X e�·f(x) is a normalizing constant, andλ ∈ R

n . Then it can be
proved [6] that the maxent distribution described above is the same as the maximum
likelihood Gibbs distribution, i.e., the distributionq

�

that maximizes
∏m

i=1 q
�

(xi), or
equivalently, minimizes the empirical log loss (negative normalized loglikelihood)

Lπ̃(λ) = − 1

m

m
∑

i=1

ln q
�

(xi) = −π̃[ln q
�

] (1)

A related measure is the relative entropy (or Kullback-Leibler divergence), defined as

RE(π̃ ‖ q
�

) = π̃[ln(π̃/q
�

)].

The log loss and the relative entropy differ only by the constantH(π̃). We will use the
two interchangeably as objective functions.

Thus, the convex programs corresponding to the two optimization problems are

P : max
p∈∆

H(p) subject to Q : min
�∈Rn

Lπ̃(λ)

p[fj] = π̃[fj ]

where∆ is the simplex of probability distributions overX .
This basic approach computes the maximum entropy distributionp for whichp[fj ] =

π̃[fj ]. However, we do not expect̃π[fj ] to beequalto π[fj] but only close to it. There-
fore, in keeping with the motivation above, we can soften these constraints to have the
form

|p[fj ] − π̃[fj ]| ≤ βj (2)

whereβj is an estimated upper bound of how closeπ̃[fj ], being an empirical average,
must be to its true expectationπ[fj ]. Thus, the problem can be stated as follows:

max
p∈∆

H(p) subject to

∀j :
∣

∣p[fj ] − π̃[fj]
∣

∣ ≤ βj



This corresponds to the convex program:

P ′ : max
p∈(R+)X

H(p) subject to

∑

x∈Xp(x) = 1 (λ0)

∀j : π̃[fj ] − p[fj ] ≤ βj (λ+
j )

∀j : p[fj ] − π̃[fj ] ≤ βj (λ−

j )

To compute the convex dual, we form the Lagrangian (dual variables are indicated next
to constraints) to obtain the dual program

min
λ0∈R

λ
−

j
,λ

+

j
∈R

+

max
p∈(R+)X

[

H(p) − λ0

([
∑

x∈Xp(x)
]

− 1
)

+
∑

j

(λ+
j − λ−

j ) (p[fj ] − π̃[fj ]) +
∑

j

βj(λ
+
j + λ−

j )
]

.

Note that we have retained use of the notationp[f ] andH(p), with the natural defini-
tions, even thoughp is no longer necessarily a probability distribution. Without loss
of generality we may assume that in the solution, at most one in each pairλ+

j , λ−

j is
nonzero. Otherwise, we could decrease them both by a positive value, decreasing the
value of the third sum while not affecting the remainder of the expression. Thus, if we
setλj = λ+

j − λ−

j then we obtain a simpler program

min
λ0,λj∈R

max
p∈(R+)X

[

H(p)−λ0

([
∑

x∈Xp(x)
]

− 1
)

+
∑

j

λj (p[fj] − π̃[fj ])+
∑

j

βj

∣

∣λj

∣

∣

]

.

The inner expression is differentiable and concave inp(x). Setting partial derivatives
with respect top(x) equal to zero yields thatp must be a Gibbs distribution with pa-
rameters corresponding to dual variablesλj andlnZ

�

= λ0 + 1. Hence the program
becomes

min
�∈Rn

[

H(q
�

) + λ · (q
�

[f ] − π̃[f ]) +
∑

j

βj

∣

∣λj

∣

∣

]

. (3)

Note that

H(q
�

) = −q
�

[ln q
�

] = −q
�

[λ · f − lnZ
�

] = −λ · q
�

[f ] + lnZ
�

.

Hence, the inner expression of Eq. (3) becomes

−λ · π̃[f ] + lnZ
�

+
∑

j

βj

∣

∣λj

∣

∣ = Lπ̃(λ) +
∑

j

βj

∣

∣λj

∣

∣. (4)

(See Eq. (5) below.) Denoting this function byL�π̃ (λ), we obtain the final version of the
dual program

Q′ : min
�

L�π̃(λ).

Thus, we have shown that maxent with relaxed constraints is equivalent tominimizing
L�π̃ (λ). This modified objective function consists of an empirical loss termLπ̃(λ) plus
an additional term

∑

j βj |λj | that can be interpreted as a form of regularization limiting
how large the weightsλj can become.



3 Bounding the Loss on the Target Distribution

In this section, we derive bounds on the performance of relaxed maxent relative to the
true distributionπ. That is, we are able to boundLπ(λ̂) in terms ofLπ(λ�) whenλ̂

minimizes the regularized loss andq
�

� is an arbitrary Gibbs distribution, in particu-
lar, the Gibbs distribution minimizing the true loss. Note thatRE(π ‖ q

�

) differs from
Lπ(λ) only by the constant termH(π), so analogous bounds also hold forRE(π ‖ q

�̂

).
We begin with the following simple lemma on which all of the bounds in this section

are based. The lemma states that the difference between the true and empirical loss of
any Gibbs distribution can be bounded in terms of the magnitude of the weightsλj and
the deviation of feature averages from their means.

Lemma 1. Letq
�

be a Gibbs distribution. Then

∣

∣Lπ̃(λ) − Lπ(λ)
∣

∣ ≤
n

∑

j=1

∣

∣λj

∣

∣

∣

∣π̃[fj] − π[fj ]
∣

∣

Proof. Note that

Lπ̃(λ) = −π̃[ln q
�

] = −π̃[λ · f − lnZ
�

] = −λ · π̃[f ] + lnZ
�

. (5)

Using an analogous identity forLπ(λ), we obtain
∣

∣Lπ̃(λ) − Lπ(λ)
∣

∣ =
∣

∣−λ · π̃[f ] + lnZ
�

+ λ · π[f ] − lnZ
�

∣

∣

=
∣

∣λ · (π̃[f ] − π[f ])
∣

∣ ≤
n

∑

j=1

∣

∣λj

∣

∣

∣

∣π̃[fj ] − π[fj ]
∣

∣ ⊓⊔

This lemma yields an alternative motivation for minimizingL�π̃ . For if we have
bounds

∣

∣π̃[fj ] − π[fj]
∣

∣ ≤ βj , then the lemma implies thatLπ(λ) ≤ L�π̃(λ). Thus, in

minimizingL�π̃ (λ), we also minimize an upper bound onLπ(λ), the true log loss ofλ.
Next, we prove that the distribution produced using maxent cannot bemuch worse

than the best Gibbs distribution (with bounded weight vector), assuming the empirical
errors of the features are not too large.

Theorem 1. Assume that for eachj,
∣

∣π[fj ] − π̃[fj ]
∣

∣ ≤ βj . Letλ̂ minimize the regular-

ized log lossL�π̃(λ). Then for an arbitrary Gibbs distributionq
�

�

Lπ(λ̂) ≤ Lπ(λ�) + 2
n

∑

j=1

βj

∣

∣λ∗

j

∣

∣.

Proof.

Lπ(λ̂) ≤ Lπ̃(λ̂) +
∑

j βj

∣

∣λ̂j

∣

∣ = L�π̃ (λ̂) (6)

≤ L�π̃ (λ�) = Lπ̃(λ�) +
∑

j βj

∣

∣λ∗

j

∣

∣ (7)

≤ Lπ(λ�) + 2
∑

j βj

∣

∣λ∗

j

∣

∣. (8)

Eqs. (6) and (8) follow from Lemma 1, Eq. (7) follows from the optimality of λ̂. ⊓⊔



Thus, if we can bound|π[fj ]− π̃[fj ]|, then we can use Theorem 1 to obtain a bound
on the true lossLπ(λ̂). Fortunately, this is just a matter of bounding the difference
between an empirical average and its expectation, a problem for which there exists a
huge array of techniques. For instance, when the features are bounded, we can prove
the following:

Corollary 1. Assume that featuresf1, . . . , fn are bounded in[0, 1]. Let δ > 0 and let
λ̂ minimizeL�π̃(λ) with βj = β =

√

ln(2n/δ)/(2m) for all j. Then with probability
at least1 − δ, for every Gibbs distributionq

�

� ,

Lπ(λ̂) ≤ Lπ(λ�) + 2
∥

∥λ�

∥

∥

1

√

ln(2n/δ)

2m
.

Proof. By Hoeffding’s inequality, for a fixedj, the probability that|π[fj ] − π̃[fj]| ex-
ceedsβ is at moste−2β2m = δ/n. By the union bound, the probability of this happening
for anyj is at mostδ. The corollary now follows immediately from Theorem 1. ⊓⊔

Similarly, when thefj ’s are selected from a possibly larger class of binary features
with VC-dimensiond, we can prove the following corollary. This will be the case,
for instance, when using threshold features onk variables, a class with VC-dimension
O(ln k).

Corollary 2. Assume that features are binary with VC-dimensiond. Let δ > 0 and
let λ̂ minimizeL�π̃ (λ) with βj = β =

√

[d ln(em2/d) + ln(1/δ) + ln(4e8)]/(2m) for
all j. Then with probability at least1 − δ, for every Gibbs distributionq

�

� ,

Lπ(λ̂) ≤ Lπ(λ�) + 2
∥

∥λ�

∥

∥

1

√

d ln(em2/d) + ln(1/δ) + ln(4e8)

2m
.

Proof. In this case, a uniform-convergenceresult of Devroye [7], combined with Sauer’s
Lemma, can be used to argue that|π[fj] − π̃[fj ]| ≤ β for all fj simultaneously, with
probability at least1 − δ. ⊓⊔

As noted in the introduction, these corollaries show that the difference in perfor-
mance between the density estimate computed by minimizingL�π̃ and the best Gibbs
distribution (of bounded norm), becomes small rapidly as the number of samplesm
increases. Moreover, the dependence of this difference on the number or complexity of
the features is quite moderate.

4 A Sequential-update Algorithm and Convergence Proof

There are a number of algorithms for finding the maxent distribution, especially iterative
scaling and its variants [4, 6]. In this section, we describe and prove the convergence
of a sequential-update algorithm that modifies one weightλj at a time, as explored
by Collins, Schapire and Singer [3] in a similar setting. This styleof coordinate-wise
descent is convenient when working with a very large (or infinite) number of features.



Input: Finite domainX
featuresf1, . . . , fn wherefj : X → [0, 1]
examplesx1, . . . , xm ∈ X

nonnegative regularization parametersβ1, . . . , βn

Output: �1,�2, . . . minimizingL�π̃(�)
Let�1 = 0

For t = 1, 2, . . . :
− let (j, δ) = arg min

(j,δ)
Fj(�t, δ)

whereFj(�, δ) is the expression appearing in Eq. (12)

− λt+1,j′ =

�

λt,j + δ if j′ = j

λt,j′ else

Fig. 1. A sequential-update algorithm for optimizing the regularized log loss.

As explained in Section 2, the goal of the algorithm is to findλ minimizing the
objective functionL�π̃ (λ) given in Eq. (4). Our algorithm works by iteratively adjusting
the single weightλj that will maximize (an approximation of) the change inL�π̃ . To
be more precise, suppose we addδ to λj . Let λ′ be the resulting vector of weights,
identical toλ except thatλ′

j = λj + δ. Then the change inL�π̃ is

L�π̃(λ′) − L�π̃ (λ) = λ · π̃[f ] − λ′ · π̃[f ] + lnZ
�

′ − lnZ
�

+ βj(|λ′

j | − |λj |) (9)

= −δπ̃[fj] + ln(q
�

[

eδfj
]

) + βj(|λj + δ| − |λj |) (10)

≤ −δπ̃[fj] + ln(q
�

[

1 + (eδ − 1)fj

]

) + βj(|λj + δ| − |λj |) (11)

= −δπ̃[fj] + ln(1 + (eδ − 1)q
�

[fj ]) + βj(|λj + δ| − |λj |). (12)

Eq. (9) follows from Eq. (5). Eq. (10) uses

Z
�

′ =
∑

x∈X

e�·f(x)+δfj(x) = Z
�

∑

x∈X

q
�

(x)eδfj (x). (13)

Eq. (11) is becauseeδx ≤ 1 + (eδ − 1)x for x ∈ [0, 1].
LetFj(λ, δ) denote the expression in Eq. (12). This function can be minimized over

all choices ofδ ∈ R via a simple case analysis on the sign ofλj + δ. In particular, using
calculus, we see that we only need consider the possibility thatδ = −λj or thatδ is
equal to

ln

(

(π̃[fj ] − βj)(1 − q
�

[fj ])

(1 − π̃[fj ] + βj)q�[fj ]

)

or ln

(

(π̃[fj ] + βj)(1 − q
�

[fj ])

(1 − π̃[fj] − βj)q�[fj ]

)

where the first and second of these can be valid only ifλj + δ ≥ 0 andλj + δ ≤ 0,
respectively.

This case analysis is repeated for all featuresfj . The pair(j, δ) minimizingFj(λ, δ)
is then selected andδ is added toλj . The complete algorithm is shown in Figure 1.

The following theorem shows that this algorithm is guaranteed to produce a se-
quence ofλt’s minimizing the objective functionL�π̃ in the case of interest where all



theβj ’s are positive. A modified proof can be used in the unregularized case in which
all theβj ’s are zero.

Theorem 2. Assume all theβj ’s are strictly positive. Then the algorithm of Figure 1
produces a sequenceλ1,λ2, . . . for which

lim
t→∞

L�π̃ (λt) = min
�

L�π̃ (λ).

Proof. Let us define the vectorsλ+ andλ− in terms ofλ as follows: for eachj, if
λj ≥ 0 thenλ+

j = λj andλ−

j = 0, and ifλj ≤ 0 thenλ+
j = 0 andλ−

j = −λj . Vectors

λ̂+, λ̂−, λ+
t , λ−

t , etc. are defined analogously.
We begin by rewriting the functionFj . For anyλ, δ, we have that

|λ + δ| − |λ| = min{δ+ + δ− | δ+ ≥ −λ+, δ− ≥ −λ−, δ+ − δ− = δ}. (14)

This can be seen by a simple case analysis on the signs ofλ andλ + δ. Plugging into
the definition ofFj gives

Fj(λ, δ) = min{Gj(λ, δ+, δ−) | δ+ ≥ −λ+, δ− ≥ −λ−, δ+ − δ− = δ}

where

Gj(λ, δ+, δ−) = (δ− − δ+)π̃[fj ] + ln
(

1 + (e(δ+
−δ−) − 1)q

�

[fj ]
)

+ βj(δ
+ + δ−).

Combined with Eq. (12) and our choice ofj andδ, this gives that

L�π̃ (λt+1) − L�π̃ (λt) ≤ min
j

min
δ

Fj(λt, δ)

= min
j

min{Gj(λt, δ
+, δ−) | δ+ ≥ −λ+

t,j , δ
− ≥ −λ−

t,j} (15)

Let minG(λt) denote this last expression.
SinceGj(λ, 0, 0) = 0, it follows thatminG(λt) is not positive and henceL�π̃(λt)

is nonincreasing int. Since log loss is nonnegative, this means that

∑

j

βj |λt,j | ≤ L�π̃ (λ1) < ∞.

Therefore, using our assumption that theβj ’s are strictly positive, we see that theλt’s
must belong to a compact space.

Sinceλ̂t’s come from a compact space, in Eq. (15) it suffices to consider updatesδ+

andδ− that come from a compact space themselves. FunctionsGj are uniformly con-
tinuous over these compact spaces, hence the functionminG is continuous.

The fact that̂λt’s come from a compact space also implies that they must have a
subsequence converging to some vectorλ̂. Clearly,L�π̃ is nonnegative, and we already
noted thatL�π̃(λt) is nonincreasing. Therefore,limt→∞ L�π̃(λt) exists and is equal, by
continuity, toL�π̃ (λ̂). Moreover, the differencesL�π̃ (λt+1)−L�π̃(λt) must be converging



to zero, sominG(λt), which is nonpositive, also must be converging to zero by Eq. (15).
By continuity, this means thatminG(λ̂) = 0. In particular, for eachj, we have

min{Gj(λ̂, δ+, δ−) | δ+ ≥ −λ̂+
j , δ− ≥ −λ̂−

j } = 0. (16)

We will complete the proof by showing that this equation implies thatλ̂+ and λ̂−

together withq
�̂

satisfy the KKT (Kuhn-Tucker) conditions [14] for the convex pro-
gramP ′, and thus form a solution to this optimization problem as well as to its dualQ′,
the minimization ofL�π̃ . Forp = q

�̂

, these conditions work out to be the following for
all j:

λ̂+
j ≥ 0, π̃[fj ] − q

�̂

[fj] ≤ βj , λ̂+
j (π̃[fj ] − q

�̂

[fj ] − βj) = 0 (17)

λ̂−

j ≥ 0, q
�̂

[fj ] − π̃[fj] ≤ βj , λ̂−

j (q
�̂

[fj ] − π̃[fj] − βj) = 0. (18)

Recall thatGj(λ̂, 0, 0) = 0. Thus, by Eq. (16), if̂λ+
j > 0 thenGj(λ̂, δ+, 0) is

nonnegative in a neighborhood ofδ+ = 0, and so has a local minimum at this point.
That is,

0 =
∂Gj(λ̂, δ+, 0)

∂δ+

∣

∣

∣

δ+=0
= −π̃[fj] + q

�̂

[fj ] + βj .

If λ̂+
j = 0, then Eq. (16) gives thatGj(λ̂, 0, 0) ≥ 0 for δ+ ≥ 0. Thus,Gj(λ, δ+, 0)

cannot be decreasing atδ+ = 0. Therefore, the partial derivative evaluated above must
be nonnegative. Together, these arguments exactly prove Eq. (17). Eq.(18) is proved
analgously.

Thus, we have proved that

lim
t→∞

L�π̃ (λt) = L�π̃ (λ̂) = min
�

L�π̃ (λ). ⊓⊔

5 A Parallel-update Algorithm

Much of this paper has tried to be relevant to the case in which we are faced witha very
large number of features. However, when the number of features is relativelysmall,
it may be reasonable to minimize the regularized lossL�π̃ (λ) using an algorithm that
updates all features simultaneously on every iteration. There are quite a few algorithms
that do this for the unregularized case, such as iterative scaling [4, 6], gradient descent,
Newton and quasi-Newton methods [11, 16].

Williams [20] outlines how to modify any gradient based search to includeℓ1-style
regularization. Kazama and Tsujii [10] use a gradient based method that imposes ad-
ditional linear constraints to avoid discontinuities in the first derivative. Regularized
variants of iterative scaling were proposed by Goodman [8], but without a complete
proof of convergence. In this section, we describe a variant of iterative scaling with a
proof of convergence. Note that the gradient based or Newton methods might be faster
in practice.

Throughout this section, we make the assumption (without loss ofgenerality) that,
for all x ∈ X , fj(x) ≥ 0 and

∑

j fj(x) ≤ 1. Like the algorithm of Section 4, our



parallel-update algorithm is based on an approximation of the change in the objective
functionL�π̃ , in this case the following, whereλ′ = λ + δ:

L�π̃ (λ′) − L�π̃ (λ) = λ · π̃[f ] − λ′ · π̃[f ] + lnZ
�

′ − lnZ
�

+
∑

j

βj(|λ′

j | − |λj |)

= −δ · π̃[f ] + ln q
�

[exp(δ · f)] +
∑

j

βj(|λj + δj| − |λj |) (19)

≤
∑

j

[

−δj π̃[fj ] + q
�

[fj](e
δj − 1) + βj(|λj + δj| − |λj |)

]

. (20)

Eq. (19) uses Eq. (13). For Eq. (20), note first that, ifxj ∈ R andpj ≥ 0 with
∑

j pj ≤ 1
then

exp
(

∑

j pjxj

)

− 1 ≤
∑

j

pj(e
xj − 1).

(See Collins, Schapire and Singer [3] for a proof.) Thus,

ln q
�

[

exp
(

∑

j δjfj

)]

≤ ln q
�

[

1 +
∑

j fj(e
δj − 1)

]

= ln
(

1 +
∑

j q
�

[fj ](e
δj − 1)

)

≤
∑

j

q
�

[fj ](e
δj − 1)

sinceln(1 + x) ≤ x for all x > −1.
Our algorithm, on each iteration, minimizes Eq. (20) over all choices of theδj ’s.

With a case analysis on the sign ofλj + δj , and some calculus, we see that the mini-
mizingδj must occur whenδj = −λj , or whenδj is either

ln

(

π̃[fj ] − βj

q
�

[fj]

)

or ln

(

π̃[fj ] + βj

q
�

[fj ]

)

where the first and second of these can be valid only ifλj + δj ≥ 0 andλj + δj ≤ 0,
respectively. The full algorithm is shown in Figure 2. As before, we canprove the
convergence of this algorithm when theβj ’s are strictly positive.

Theorem 3. Assume all theβj ’s are strictly positive. Then the algorithm of Figure 2
produces a sequenceλ1,λ2, . . . for which

lim
t→∞

L�π̃ (λt) = min
�

L�π̃ (λ).

Proof. The proof mostly follows the same lines as for Theorem 2. Here we sketchthe
main differences.

Let us redefineFj andGj as follows:

Fj(λ, δ) = −δπ̃[fj ] + q
�

[fj](e
δ − 1) + βj(|λj + δ| − |λj |)



Input: Finite domainX
featuresf1, . . . , fn wherefj : X → [0, 1]

and
P

j
fj(x) ≤ 1 for all x ∈ X

examplesx1, . . . , xm ∈ X

nonnegative regularization parametersβ1, . . . , βn

Output: �1,�2, . . . minimizingL�π̃(�)
Let�1 = 0

For t = 1, 2, . . . :

− for eachj, let δj = arg min
δ

�

−δπ̃[fj ] + q
�

[fj ](e
δ − 1) + βj(|λj + δ| − |λj |)

�

− update�t+1 = �t + �

Fig. 2. A parallel-update algorithm for optimizing the regularized log loss.

and

Gj(λ, δ+, δ−) = (δ− − δ+)π̃[fj ] + q
�

[fj ](e
δ+

−δ− − 1) + βj(δ
+ + δ−).

Then by Eq. (14),

Fj(λ, δ) = min{Gj(λ, δ+, δ−) | δ+ ≥ −λ+
j , δ− ≥ −λ−

j , δ = δ+ − δ−}.

So, by Eq. (20),

L�π̃(λt+1) − L�π̃(λt) ≤ min
�

∑

j Fj(λt, δj)

=
∑

j minδj
Fj(λt, δj)

=
∑

j min{Gj(λt, δ
+
j , δ−

j ) | δ+
j ≥ −λ+

j , δ−

j ≥ −λ−

j }.

Note thatGj(λ, 0, 0) = 0, so none of the terms in this sum can be positive. As in
the proof of Theorem 2, theλt’s have a convergent subsequence converging to someλ̂

for which
∑

j min{Gj(λ̂, δ+
j , δ−

j ) | δ+
j ≥ −λ+

j , δ−

j ≥ −λ−

j } = 0.

This fact, in turn, implies that̂λ+, λ̂− andq
�̂

satisfy the KKT conditions for convex
programP ′. This follows using the same arguments on the derivatives ofGj as in
Theorem 2. ⊓⊔

6 Experiments

In order to evaluate the effect of regularization on real data, we used maxent tomodel
the distribution of some bird species, based on occurrence records in theNorth Ameri-
can Breeding Bird Survey [17]. Experiments described in this section overlap with the
(much more extensive) experiments given in the companion paper [13].

We selected four species with a varying number of occurrence records: Hutton’s
Vireo (198 occurrences), Blue-headed Vireo (973 occurrences), Yellow-throatedVireo
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Fig. 3. Learning curves.Log loss averaged over 10 partitions as a function of the number of
training examples. Numbers of training examples are plotted on a logarithmic scale.

(1611 occurrences) and Loggerhead Shrike (1850 occurrences). The occurrence data of
each species was divided into ten random partitions: in each partition, 50% ofthe occur-
rence localities were randomly selected for the training set, while the remaining 50%
were set aside for testing. The environmental variables (coverages) use a North Ameri-
can grid with 0.2 degree square cells. We used seven coverages: elevation, aspect, slope,
annual precipitation, number of wet days, average daily temperature and temperature
range. The first three derive from a digital elevation model for North America [18], and
the remaing four were interpolated from weather station readings [12]. Eachcoverage
is defined over a 386× 286 grid, of which 58,065 points have data for all coverages.

In our experiments, we used threshold features derived from all environmental vari-
ables. We reduced theβj to a single regularization parameterβ as follows. We expect
|π[fj ] − π̃[fj]| ≈ σ[fj ]/

√
m, whereσ[fj ] is the standard deviation offj underπ. We

therefore approximatedσ[fj ] by the sample deviatioñσ[fj ] and usedβj = βσ̃[fj ]/
√

m.
We believe that this method is more practical than the uniform convergencebounds
from section 3, because it allows differentiation between features depending on empiri-
cal error estimates computed from the sample data. In order to analyze this method, we
could, for instance, bound errors in standard deviation estimates usinguniform conver-
gence results.

We ran two types of experiments. First, we ran maxent on increasing subsets of the
training data and evaluated log loss on the test data. We took an average overten par-
titions and plotted the log loss as a function of the number of training examples. These
plots are referred to as learning curves. Second, we also varied the regularization pa-
rameterβ and plotted the log loss for fixed numbers of training examples as functions of
β. These curves are referred to as sensitivity curves. In addition to these curves, we give
examples of Gibbs distributions returned by maxent with and withoutregularization.

Fig. 3 shows learning curves for the four studied species. In all our runs we set
β = 1.0. This choice is justified by the sensitivity curve experiments described below.
In the absence of regularization, maxent would exactly fit the training data with delta
functions around sample values of the environmental variables. This would result in
severe overfitting even when the number of examples is large. As the learning curves
show, the regularized maxent does not exhibit this behavior, and findsbetter and better
distributions as the number of training examples increases.

In order to see how regularization facilitates learning, we examine the resulting dis-
tributions. In Fig. 4, we show Gibbs distributions returned bya regularized and an insuf-
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ficently regularized run of maxent on the first partition of the Yellow-throated Vireo. To
represent Gibbs distributions, we use feature profiles. For each environmental variable,
we plot the contribution to the exponent by all the derived threshold features as a func-
tion of the value of the environmental variable. This contribution isjust the sum of step
functions corresponding to threshold features weighted by the corresponding lambdas.
As we can see, the value ofβ = 0.01 only prevents components ofλ from becoming
arbitrarily large, but it does little to prevent heavy overfitting with many peaks capturing
single training examples. Raisingβ to 1.0 completely eliminates these peaks.

Fig. 5 shows the sensitivity of maxent to the regularization valueβ. Note that the
minimum log loss is achieved consistently aroundβ = 1.0 for all studied species. This
suggests that for the purposes of maxent regularization,σ̃[fj] are good estimates of
∣

∣π̃[fj ] − π[fj]
∣

∣ and that the maxent criterion models the underlying distribution well,
at least for threshold features. Log loss minima for other feature types may be less
consistent accross different species [13].

Acknowledgements:R. Schapire and M. Dudı́k received support through NSF grant
CCR-0325463. M. Dudı́k was also partially supported by a Gordon Wufellowship.



References

1. Adam L. Berger, Stephen A. Della Pietra, and Vincent J. Della Pietra. A maximum entropy
approach to natural language processing.Computational Linguistics, 22(1):39–71, 1996.

2. S. F. Chen and R. Rosenfeld. A survey of smoothing techniques for ME models. IEEE
Transactions on Speech and Audio Processing, 8(1):37–50, January 2000.

3. Michael Collins, Robert E. Schapire, and Yoram Singer. Logistic regression, AdaBoost and
Bregman distances.Machine Learning, 48(1):253–285, 2002.

4. J. N. Darroch and D. Ratcliff. Generalized iterative scaling for log-linear models.The Annals
of Mathematical Statistics, 43(5):1470–1480, 1972.

5. Ofer Dekel, Shai Shalev-Shwartz, and Yoram Singer. Smooth ǫ-insensitive regression by
loss symmetrization. InProceedings of the Sixteenth Annual Conference on Computational
Learning Theory, pages 433–447. Springer, 2003.

6. Stephen Della Pietra, Vincent Della Pietra, and John Lafferty. Inducing features of random
fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(4):1–13, April
1997.

7. Luc Devroye. Bounds for the uniform deviation of empirical measures.Journal of Multi-
variate Analysis, 12:72–79, 1982.

8. Joshua Goodman. Exponential priors for maximum entropy models. Technical report, Mi-
crosoft Research, 2003. (Available from http://research.microsoft.com/˜joshuago/longexpo-
nentialprior.ps).

9. E. T. Jaynes. Information theory and statistical mechanics. Physics Reviews, 106:620–630,
1957.

10. Jun’ichi Kazama and Jun’ichi Tsujii. Evaluation and extension of maximum entropy mod-
els with inequality constraints. InConference on Empirical Methods in Natural Language
Processing, pages 137–144, 2003.

11. Robert Malouf. A comparison of algorithms for maximum entropy parameter estimation. In
Proceedings of the Sixth Conference on Natural Language Learning, pages 49–55, 2002.

12. Mark New, Mike Hulme, and Phil Jones. Representing twentieth-century space-time climate
variability. Part 1: Development of a 1961-90 mean monthly terrestrial climatology.Journal
of Climate, 12:829–856, 1999.

13. Steven J. Phillips, Miroslav Dudı́k, and Robert E. Schapire. A maximum entropy approach to
species distribution modeling. InProceedings of the Twenty-First International Conference
on Machine Learning, 2004.

14. R. Tyrrell Rockafellar.Convex Analysis. Princeton University Press, 1970.
15. Saharon Rosset and Eran Segal. Boosting density estimation. In Advances in Neural Infor-

mation Processing Systems 15, pages 641–648. MIT Press, 2003.
16. Ruslan Salakhutdinov, Sam T. Roweis, and Zoubin Ghahramani. On the convergence of

bound optimization algorithms. InUncertainty in Artificial Intelligence 19, pages 509–516,
2003.

17. J. R. Sauer, J. E. Hines, and J. Fallon. The North Americanbreeding bird survey, results and
analysis 1966–2000, Version 2001.2. http://www.mbr-pwrc.usgs.gov/bbs/bbs.html, 2001.
USGS Patuxent Wildlife Research Center, Laurel, MD.

18. USGS. HYDRO 1k, elevation derivative database. Available at http://edcdaac.usgs.gov/
gtopo30/hydro/, 2001. United States Geological Survey, Sioux Falls, South Dakota.

19. Max Welling, Richard S. Zemel, and Geoffrey E. Hinton. Self supervised boosting. In
Advances in Neural Information Processing Systems 15, pages 665–672. MIT Press, 2003.

20. Peter M. Williams. Bayesian regularization and pruningusing a Laplace prior.Neural
Computation, 7(1):117–143, 1995.


